Statistical methods for learning to classify with biomarker panels: insights from cryptanalysis

Paul McKeigue, Marco Colombo

Usher Institute of Population Health Sciences and Informatics
Methodological problems of learning to predict from biomarker panels

- What sample size is required to learn to classify from a high-dimensional biomarker panel?
- How should predictive performance of the panel be reported?
- How do we learn a model that:
 - has optimal predictive performance
 - is explainable (not “black-box”)
 - uses the smallest subset of biomarkers
Limitations of the C-statistic (area under ROC curve) for assessing predictive performance

- Not obvious how C is relevant to risk stratification
- Increment in C obtained by adding new biomarkers is difficult to interpret
 - depends on what covariates were included in the baseline model, and whether they were matched between cases and controls
- Mistaken belief that no useful increase in predictive performance can be achieved by adding new biomarkers to a baseline model that has $C > 0.9$
- Widely-adopted alternatives - “Integrated Discrimination Improvement” and “Net Reclassification Index” - are not (mathematically) proper scoring rules.
A Bayesian approach to assessing predictive performance

- **Weight of evidence** $W \left(\frac{\text{case}}{\text{control}} \right)$ favouring case over control status provided by a score is the logarithm of the Bayes factor (ratio of likelihoods).
 - can calculate it on test data for any predictor that outputs probabilities
 - weights of evidence contributed by independent predictors are additive

- **Sampling distribution of** $W \left(\frac{\text{case}}{\text{control}} \right)$ in cases and controls defines how the score will perform as a risk stratifier
 - if only we knew this sampling distribution
If the effective number of independent predictors is large:

- distributions of $W \left(\frac{\text{case}}{\text{control}} \right)$ in cases and $W \left(\frac{\text{control}}{\text{case}} \right)$ in controls are gaussian with expectation Λ, variance 2Λ natural log units
 - we only need Λ to characterize how the score will perform as a risk stratifier

- Λ is the expected information for discrimination
Relation of C-statistic to expected information for discrimination Λ

- Contributions of independent predictors are additive on scale of Λ, but not on scale of C.
Learning curves for classifying with high-dimensional biomarker panels (McKeigue, *SMRR* 2017)

- Required ratio of cases to biomarkers to learn 80% of information for discrimination:
 - 0.1 for $C = 0.9$, 1% of biomarkers with nonzero effect
 - 9 for $C = 0.75$, all biomarkers with nonzero effect
Models for prediction from high-dimensional biomarker panels

- To model biomarker effects, we have to model the distribution of effect sizes
 - many biomarkers of tiny effect, or a few biomarkers of large effect?
 - standard penalized regression methods - ridge, LASSO - are not flexible enough
Stan (Carpenter, Gelman, Hoffman et al 2017) - a program for Bayesian computation

- Bayesian theory always works - but in practice the computation may be intractable
 - Standard Bayesian learning algorithms cannot learn models with many correlated parameters
- Stan overcomes this by using Hamiltonian Monte Carlo algorithm (Duane, Kennedy, Pendleton & Roweth 1987)
 - samples the posterior distribution of all parameters jointly
 - Can learn model of biomarker effects, including distribution of effect sizes, in one step
Evaluating a panel of biomarkers for prediction of rapid progression of diabetic nephropathy

- 789 individuals from Scottish Type 1 Bioresource
- 24 proteins measured in serum (Myriad/RBM platform).
- Bayesian logistic regression with hierarchical shrinkage distribution of effect sizes, fitted with Stan, evaluated by cross-validation.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Λ (bits)</th>
<th>$W_{\text{var/mean}}$ (nats)</th>
<th>$\Delta \log \mathcal{L}$ (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.48</td>
<td>0.0</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Baseline + biomarkers</td>
<td>0.60</td>
<td>0.2</td>
<td>2.0</td>
<td>20.6</td>
</tr>
</tbody>
</table>
Projective variable selection of biomarkers, using posterior samples from full model

- Baseline covariates
- Interleukin 2 receptor alpha
- Thrombomodulin
- Growth-regulated alpha protein
- Tumour necrosis factor receptor I

KL divergence (nats)
Number of biomarkers
Proportion of information
Conclusions

- Expected information for discrimination Λ should replace C as summary measure of predictive performance
 - estimated by cross-validation, or on a separate test dataset
- Evidence favouring one model over another should be evaluated as difference in test log-likelihoods of models.
- Using Stan we can evaluate performance of a biomarker panel and select the best subset of biomarkers in one step.
- Even good tests ($\Lambda > 3$ bits) will often give wrong results