Biosensor Design Considerations
Outline

- What do you want to detect?
- How will you fabricate your sensor?
- How will you ensure specificity?
- What is your preferred detection method?
- How will you avoid false signals?
- How will you improve sensitivity?
Biosensor Design

The Analyte: What do you want to measure?

Target Molecule:

- Protein, toxin, peptide, vitamin, sugar, metal ion

Glucose

Cholera Toxin
Biosensor Design

Sample Handling

(How do you deliver the analyte to the sensitive region?)

- (Micro)fluidics
- Concentration (increase/decrease)
- Filtration/Selection
Biosensor Design
Design & Fabrication
(How do you make the device?)
Biosensor Design

Design & Fabrication

(How do you make the device?)

Biosensor Design
Detection/Recognition
(How do you specifically detect the analyte?)
Antibody/Antigen Interaction

- Antibody: Consists of four polypeptides - two heavy chains and two light chains joined to form a "Y" shaped molecule.

- The amino acid sequence in the tips of the "Y" varies greatly among different antibodies. This variable region, composed of 110-130 amino acid residues, give the antibody its specificity for binding antigen.
Peptides and Polypeptides

Structure of an Amino Acid

Side chain

Amino Group

Peptide group 1

Peptide group 2

Carboxyl Group

A side chain:
Glutamine (Gln)

\[\text{CH}_2 - \text{CH}_2 - \text{C} = \text{O} \]
\[\text{NH}_2 \]

Dipeptide

Polypeptide

N-terminus

+H\textsubscript{3}N−

Cys

Ar

Gly

Leu

C-terminus
Proteins and Antibodies

Secondary Structure

Tertiary Structure

Quaternary Structure
Antibody/Antigen Interaction

In hen egg white lysozyme, a glutamine at position 121 (Gln 121) protrudes away from the antigen surface.

Hydrogen bonds (yellow) stabilize the antibody-antigen interaction. Van der Waals, hydrophobic and electrostatic forces also improve the binding specificity between antibody and antigen.
Immunoassay: Competitive Binding 1

- Antibody
- Immobilisation surface
- Antigen
- Antigen-enzyme complex

Coating → Incubation

Affinity Reaction

Enzyme Reaction

Product Measurement
I. No analyte - high detection signal

II. Analyte present - detection signal reduced
Biosensor Design

Signal (How do you know there was a detection?)

Specific Recognition?

The antibody is usually immobilized on a solid support/sensor

- Common Signalling Principles:
 - Optical (Surface Plasmon Resonance, Total Internal Reflectance Fluorescence)
 - Electrical (Voltammetry, Potentiometry, Conductivity)
 - Electromechanical (Piezoelectric crystal)
 - Thermal
 - Magnetic (Beads)
Biosensor Design

Avoiding False Signals

Specific Recognition

Non Specific Signal

False Specific Recognition?
Biosensor Design

Improving Performance

Secondary Signal Amplifier

Highly Specific Detection

Inert Background

Magnetic bead, fluorescent dye, enzyme, etc.
Biosensor Design
Regeneration or Single Use?

Break Binding

Low and high pH buffers
pH~1 and pH~13
Biosensor Design

Data Analysis

- Response: Variable vs Time
- Example of Response

Variables:
- Fluorescence
- Refractive index
- Potential
- Current
- Frequency
- Mass
- Temperature
Biosensor Design

Baseline

Should be stable when there is no binding

Quantifying Noise:
Root mean square (RMS) of a sample of data points for a given time

\[x_{\text{rms}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2} = \sqrt{\frac{x_1^2 + x_2^2 + \ldots + x_n^2}{n}} \]

Quantifying Drift:
Shift in the baseline (RMS) shown as response units per time

Stable Baseline

Drifting Baseline
Biosensor Design

Sensitivity

Signal-to-Noise Ratio:
Per time unit

Spikes:
Rapid (1 datapoint) shift in signal

Baseline Shift:
Rapid (1 datapoint) shift in baseline (offset)
Biosensor Design

Identify Signal Error Sources

- Inhomogenous sample
- Bubbles/flow artifacts
- Temperature
- Electromagnetic interference
- Electronic unstability
- Unstable chip/detection layer
Improving Sensitivity

Active Sensor: Detects the analyte.

Reference Sensor: Coated with inert material does not detect the analyte.

Output Signal S:

$S = R_1 - R_2$, or $S = \frac{R_1}{R_2}$

The reference is exposed to the same kind of disturbances as the active sensor. These effects are cancelled out by taking the difference or ratio between the two sensor outputs.