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Abstract—The fixed-complexity sphere decoder (FSD) has been to benefit from the additional degrees of freedom available i

previously proposed for multiple input-multiple output (M IMO)
detection in order to overcome the two main drawbacks of the
sphere decoder (SD), namely its variable complexity and its
sequential structure. Although the FSD has shown remarkald
quasi-maximum likelihood (ML) performance and has resultal
in a highly optimized real-time implementation, no analytical
study of its performance existed for an arbitrary MIMO system.
Herein, the error probability of the FSD is analyzed, proving that
it achieves the same diversity as the maximum likelihood dettor
(MLD) independent of the constellation used. In addition, f can
also asymptotically yield ML performance in the high-signa-to-
noise ratio (SNR) regime. Those two results, together withts
fixed complexity, make the FSD a very promising algorithm for
uncoded MIMO detection.

Index Terms—Fixed-complexity sphere decoder (FSD), multi-
ple input-multiple output (MIMO), diversity order, signal detec-
tion

I. INTRODUCTION

MIMO systems [3]. This paper presents the error probability
analysis of a recently proposed detection algorithm, thedfix
complexity sphere decoder (FSD) [4], that provides good
performance at high-SNR and that is optimized for a fully-
pipelined real-time hardware implementation [5], [6].

We consider a spatially-multiplexed MIMO system with
transmit andny receive antennas, denotedag x ng. The
vector of received symbots € C"® can be modeled as

r=Hs+v, Q)

where s [s1 -+ snp]T € C"T denotes the vector of
transmitted symbols taken independently from an arbitrary
constellation® of M points withE[|s;|?] = 1/nt and where

v € C"® is the vector of independent complex Gaussian noise
samplesv; ~ CN(0,0%). The channel matriH € Crrxnr

has independent elements; ~ CN(0,1) representing a
wireless propagation environment with uncorrelated Rgkile

The use of multiple antennas at both ends of a wirelefing [3]. We assume that the channel is perfectly known at

link, i.e., multiple input-multiple output (MIMO), has beme

the receiver and thaig > nr.

the most relevant technology to improve the capacity andThe maximum likelihood detector (MLD) for this scenario
spectral efficiency of wireless communication systems [2F given by

Concentrating on the receiver end, the design and implemen-

tation of efficient detection algorithms is of vital impontae

Copyright (c) 2008 IEEE. Personal use of this material isnyed.
However, permission to use this material for any other psegpomust be
obtained from the IEEE by sending a request to pubs-peronis@ieee.org

J. Jaldén was with the KTH Signal Processing Lab, School lettEcal
Engineering, Royal Institute of Technology, Stockholm,e8en. He is now
with the Institute of Communications and Radio-Frequenaygigeering,
Vienna University of Technology, GuRhausstr. 25-29 // 389,040 Vienna,
Austria. (e-mail: joakim.jalden@nt.tuwien.ac.at).

L. G. Barbero was with the Institute for Digital Communicais, Joint Re-
search Institute for Signal & Image Processing, The Unitsesf Edinburgh,
EH9 3JL Edinburgh, U.K. He is now with the ECIT, Queens Ursitgr of
Belfast, NI Science Park, Queens Road, Queens Island, BTRB Béfast,
U.K. (e-mail: l.barbero@ecit.qub.ac.uk).

B. Ottersten is with the ACCESS Linnaeus Center, KTH Signat€ssing
Lab, Royal Institute of Technology, Osquldas vag 10, S-4@80Stockholm,
Sweden (e-mail: bjorn.ottersten@ee.kth.se). Bjorn rétta@ is also with
securityandtrust.lu, University of Luxembourg

J. S. Thompson is with the Institute for Digital Communioas, Joint
Research Institute for Signal & Image Processing, The Usitye of Ed-
inburgh, Alexander Graham Bell Building, Kings Buildingglayfield Road,
EH9 3JL Edinburgh, U.K. (e-mail: john.thompson@ed.ac.dkhn Thompson
acknowledges the support of the Scottish Funding Council tfie Joint
Research Institute with the Heriot-Watt University, whicha part of the
Edinburgh Research Partnership.

This research is funded in part by the European Researchcfaunder
the European Community’s Seventh Framework Programme/2BB7-2013)
/ ERC grant agreement no. 227044. The work was in part predent[1] at
the the International Conference on Acoustics, Speech @rhiSProcessing
in Honolulu, Hawaii, USA, April 2007.

)

However, the straightforward implementation of the MLD is
of exponentialD(M ™) complexity in the number of transmit
antennas, making it unfeasible for high-dimensional MIMO
systems. Although a more efficient MLD implementation is
provided by the sphere decoder (SD) [7], it can also be shown
to have an exponential complexity (in the worst case as well
as in the average case) 6f(M ") with v € (0,1] [8]. In
addition, the SD is a sequential algorithm that has a variabl
complexity, complicating its real-time hardware implerteen
tion [9].

Different alternatives have been proposed to reduce or
limit the complexity of the SD while approaching its ML
performance. Examples include but are not limited to:

o Combination of the SD with some form of channel
matrix ordering to reduce the average complexity of the
algorithm [10]. However, the resulting algorithm still
suffers from a variable complexity and needs a sequential
search.

« Addition of geometric or probabilistic methods to reduce
the complexity of the SD as in [11]. In this case, their
additional operations and variable complexity make them
unsuitable for hardware implementation.

SML = argsénoiQT [r — Hs||*.
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o Use of theK-Best lattice decoder [12] (equivalent to the root
sequentiaM-algorithm [13]) to approach quasi-ML per-
formance with fixed complexity. This approach provides
a fixed complexity but it is typically higher than the
complexity of the SD if quasi-ML performance is to be
guaranteed [12].

The FSD is a fixed complexity algorithm that has been
proposed in [4] and implemented in real-time on a field-
programmable gate array (FPGA) platform in [5], [6] as an
alternative to the aforementioned algorithms. Previouserm
ical studies have also shown quasi-ML performance [4]. In
this paper we show that the FSD maintains the diversity ordeg 1. Fe and SE stages in the FSD tree search appliedita @ system
of the MLD with a complexityO(M v™T), which represents with 4-QAM modulation.
an advantage over the exponentially complex sphere decoder
(SD). We further analyzse the error probability of the FSD
and show that it has a negligible performance degradatithS [4]. The paths in the tree followed by the FSD are
compared to that of the MLD in the high-signal-to-noiseaatidetermined by fixing the number of branches per node that

(SNR) regime. Specifically, it is shown that are expanded in each level, creating the sulssdh the case
. of the SD, on the other hand, the number of branches per node
lim M =1, (3) expanded in each level is a random variable that depends on

o2—0 P (SmL # 8) the particular level, the search sphere, the channel dondlit

which indicates that the FSD, in addition to having thend the noise level [10] and its average reducesdesreases
same diversity as the MLD, asymptotically achieves MIi.e., traversing down the tree) [4].
performance in the high-SNR limit. The diversity and error Although considerable research has been carried out to
probability performance achieved by the FSD together vith ireduce that average number of branches per node expanded per
fixed complexity makes the FSD a very attractive algorithievel by means of a specific channel matrix ordering [10]],[14
to solve the detection problem in next-generation MIM@he resulting algorithms suffer from the same drawbackbeas t
systems. original SD: variable complexity and a sequential struetur
The structure of the paper is as follows: Section Il dessribdhe FSD, on the other hand, takes a completely different
the FSD algorithm and presents simulation results showing &pproach. It makes use of the channel matrix ordering to fix
quasi-ML performance. Section Ill analyzes the error probthe number of branches per node while providing a quasi-
bility of the FSD, taking into account the detection ordgyrin ML performance. This results in a more optimized hardware
to give valuable insight into the simulation results préedn implementation of the algorithm compared to that of the
in Section II. Finally, conclusions are drawn in Section IV. SD [5], [6].

1. THE FIXED-COMPLEXITY SPHEREDECODER A. Generation of the Subset S

The description of the FSD is included in this section for The subset searched during the tree phase of the FSD is
completeness. The algorithm has been previously proposgcherated by defining the number of branches per node
for the detection of uncoded MIMO systems using quadratufigat are expanded per level foe= 1,...,np. Thus, the total
amplitude modulation (QAM) constellations [4]. It overcesn number of paths followed by the FSD {7, ni wherel <
the two main drawbacks of the SD from an implementation, < 7/, In each level, the; branches are expanded following
point of view, i.e., its variable complexity depending ore ththe Schnorr-Euchner enumeration [15] so that the first tranc
noise level and the channel conditions and the sequentigiresponds to the decision-feedback equalization (DEE).p
nature of its tree search phase. Although it is difficult to provide a comprehensive analysis

The FSD achieves quasi-ML performance by combining & the number of nodes that need to be expanded to achieve
specific channel matrix ordering with a search over only @uasi-ML performance, the FSD algorithm proposes a general
fixed number of lattice vectois, generated by a small subsefnethod that can be used for an arbitrary constellation and fo
S C O"T, around the received vector The transmitted vector any number of antennas [4]. The method consists of having

s € § with the smallest Euclidean distance is then selected @5 ¢ {1, A} for i = 1,...,nr, and may be described as
the solution. The process can be written as follows.
Spsp = argmin ||r — Hs|?. (4) « Initially, a full search is performed in the firgt levels,
sES expanding allM branches per node, i.en; = M for
The FSD, analogously to the SD, can be seen as a con- i = nr,...,nt — p+ 1. This will herein be denoted as
strained tree search through a tree with levels whereM the full expansion (FE) stage of the algorithm.
branches originate from each node [7]. Thus, the solutigd}to « Secondly, a single search is performed in the remaining
can be obtained recursively starting frare= n and working nt — p levels, expanding only one branch per node

backwards untili = 1, evaluating all the paths belonging following the DFE path, i.en; = 1fori =nt—p,..., 1.



This will be denoted as the single expansion (SE) sta@e Relation to other Detectors

of the algorithm. Naturally, some aspects of the FSD are related to those of

An example is given in Fig. 1 for the constrained tree seargfther detectors (apart from the obvious relation to SD) and
required in a4 x 4 system with 4-QAM modulation. Here, one of the earliest such detectors is the ML-DFE detector,
the FE stage corresponds to only one level, iles= 1. In proposed in [18]. It should however be noted that the FSD
Section I, we show that this scheme maintains the di\fﬁl’SiprovideS a Signiﬁcant performance improvement over the ML-
of the MLD. DFE. The crucial difference between the detectors is that ML

The two-stage constrained tree search of the FSD is ind®E corresponds to a search where only one path in the FE
pendent of the noise level and the channel conditions,tregul stage is expanded through the SE stage, as opposed to the
in a fixed complexity detector as opposed to the variabfEsD, where all paths in the FE stage are expanded.
complexity of the SD. The total number of Euclidean distance For the specific case ofr = ng = 4 andp = 1, the
calculated in the FSD i8/*, and simulations have shown thatFSD performs the same tree search as the Chase detector
quasi-ML performance is achieved willi? < M"*,i.e.,Sis with list size M [19], or the parallel detector for V-BLAST
a very small subset @d"*, if the two-stage constrained searckystems proposed in [20]. However, the FSD outperforms both
is combined with a special FSD channel matrix ordering [4higorithms due to a different channel matrix ordering taitb

to the two-stage search. The FSD channel matrix ordering in
the case ofnr = ng = 4 andp = 1 corresponds to the

B. FSD Channel Matrix Ordering ordering independently proposed in [21] and applied to the
The FSD channel matrix ordering determines the detecti§ihase detector. It should also be noted that detectioniagter
ordering of the signals;, fori = 1,...,nr, according to the based on selecting the signals with taegest post-processing

number of branches per node that are expanded in each lev8pise amplification have also been proposed in the context of
Thent columns ofH are ordered iteratively so that the signal§ansmit antenna selection (AS) as a means of maximizing the
with thelargest post-processing noise amplification, as define®S gain of MIMO systems [22], [23].

in [16], are detected in the FE stage. On the other hand, theéOn a final note we mention that the algorithms in [19] -
signals with the smallest post-processing noise ampliidicat [21] were proposed as a means of improving the performance

are detected in the SE stage. of the V-BLAST detector by performing several detections
The steps performed in every iteration are the following, fdn parallel. On the other hand, the FSD represents a general
i=nr,... 1 algorithm proposed in the context of achieving quasi-ML

1) The matrixQ,,.—; = HET,iHnT_i is calculated, where performance in MIMO systems.
H,.._; is the channel matrix with ther — i columns
selected in previous iterations removed. Equivalentlyy performance Example

Q...—: is the principal submatrix ofQ, obtained by

removingny — i rows and columns fron®. In this section, a numerical example of the performance of
2) Thekth column is selected according to the FSD is given showing the quasi-ML performance achieved
in uncoded MIMO detection [4]. The error probability as
arg max [Q ! ];;, if ng =M, a function of the SNR has been used as a performance
k= J 1 ) (5) measure, defined gs.rsp = P (Srsp # s) for the FSD and
arg min [Q,,, _Jj;, ifni=1, pert, 2P (81, #5) for the MLD. The SNR is obtained

averaging over the channel realizations at one receivaaate
where we assume the correct mapping is done frogyg is equal to SNR= 1/02.
index j to index k to take into account the columns gig 2 shows the error probability of the FSD in a system
of H already removed. with np = ng = 4 system using 4-,16- and 64-QAM
Intuitively, if the maximum number of branches per nodenodulation. The results have been obtained using 40,000
is expanded in one level, th®bustness of the signal is not channel realizations with 300 symbols transmitted in every
relevant to the final performance, therefore, the signatl thehannel realization. It can be seen how the FSD practically
suffers thelargest post-processing noise amplification caryields ML performance, independent of the noise level aed th
be detected in that level. The opposite occurs when ordgnstellation order. In all cases, the FSD has been sintllate
one branch per node is expanded in a level, the signal witlith p = 1 so that the signal with thiargest post-processing
the smallest post-processing noise amplification needs to b®ise amplification is detected in the FE stage. Remarkédly,
detected in this level in order not to dramatically worsea ththe case of 64-QAM, the performance degradation is of only
performance. 0.03 dB at SNR = 30 dB while calculating only 64 Euclidean
From a complexity point of view, the FSD ordering of thelistances, as opposed to thé* = 16,777,216 Euclidean
channel matrix has exactly the same complexity as the articdistances considered in the MLD. A similar example where
Bell Labs layered space time (V-BLAST) ordering proposedt = nr = 8 andp = 2 is given in [4, Fig. 5].
in [16]. Different optimized versions of the latter exist time Thus, simulations show that the FSD can be used to
literature that could be used for an implementation of thB FSapproach ML performance in MIMO detection with the ad-
ordering [17]. vantage of having a fixed complexity as opposed to the SD [4].
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Thus, if we considerp.y;, and p.sg to be of different
orders of magnitude, the error probability of the FSD can be
characterized by the maximum pfyi;, andp.sg. In particular,
wheneverp.sg < pemi the FSD will experience close to
optimal performance.

In the high-SNR regime it follows from (9) that the diversity
order of the FSD is lower bounded according to

lo

g o? > min(dur, dsg),  (10)

where
log pemL
A .
10°° ; ; ; ; ; dl\/[L = 121H1 1762 = NR (11)
5 10 15 20 25 30 35 o—=0 logo
SNR (dB)

and
Fig. 2. Error probability of the FSD and the MLD as a functidnttie SNR dsp £ lim logﬂ (12)
in a4 x 4 system. 02—0 logo?

denote the diversity of the MLD and the SE stage respectively
Although (10) initially presents a lower bound, it can be igxm

. o . _ diately shown that the bound is actually tight by considgrin
The purpose of this Section is to provide an analyticghe following two cases:

explanation of the results observed in Section II-D and [4]
assessing the performance of the algorithm in termsQfng
andp. In particular, we characterize the high-SNR behavior of
the FSD, looking at the diversity order of its error probipil » - ;
The result shows that the FSD achieves the same diversity as de'tll?ﬁ’ (9)h|ncjj|$:ate§ th‘%teiSDFZSge.SE’ L€ ZFSD =
the MLD if the appropriate number of levelsare selected se- Thus, the diversity of the trsp = dsg-
for the FE stage. In addition, the FSD also asymptoticalljherefore, we can rewrite (10) as

yields ML performance in the high-SNR regime, supporting

Ill. ERRORPROBABILITY

"1) dsg > dyi = ng: the FSD directly achieves the same
diversity as the MLD¢psp = nr, SINCEPFSD > PeML-
2) dsg < dyy: in this case, (10) yield€rsp > dsg. In

the quasi-ML performance observed in Section II-D and [4]. dpsp = min(ng, dsg) (13)
which completely characterizes the FSD diversity in terms o
A. The FSD Error Probability dy, and dsg.

When considering the error probability of the FSD it is In addition, it can b.e seen that in the particular case of
useful to separate the error event into two mutually exchusi?sE > duw, the bound in (9) yields a performance guarantee

events depending on whether the transmitted vectzzlongs that is even stronger than full diversity. Specifically,atléws
: at also the decoding loss will become negligible at high-
th;ﬁhe set of hypotheses considered by the detector. Spe%?NR. To see this, note thaisy > dys. implies that the
Y. second term in (9) tends to zero at a faster rate than the
persp = P (8rsp # 8) first term, indicating that the penalty due to sub-optinyalit
—P(5 NseS)+P(5 n S) (6 will be negligible at high-SNR. The idea, briefly introduced
(Spsp #sNs )+ PBrspAsNs ¢ 5) (6 in Section 1, is formalized by the following lemma:
whereS is given in (4). The first term on the right hand side Lemma 1. Let dy, anddsg be defined according to (11)
of (6) asserts that belongs to the set of hypotheses considereahd (12). Ifdsg > dyy, it follows that

by the FSD but does not minimize (4). This implies thatill

not minimize (2) and it follows that alzimo % =1.
P(spsp #sNs €S5) <P (SuL #s) . () Proof: Given in Appendix A.

The second term on the right hand side of (6) asserts that then Jight of (13) and Lemma 1, it is clear that it is sufficient
transmitted vector does not belong to the set of hypothesgscomputedsy; in order to complete the analysis of the FSD
considered. In this case it is impOSSible for the FSD to Cmci@rror probab|||ty and to establish under which Circums@qc
in favor of the transmitted message and it follows that  the FSD provides quasi-ML performance. Given the structure
of the FSD,dsg would depend on the number of levelsof

P(spsp #sNs ¢ S)=P(s¢S) . (8) the SE stage. However, it is not immediately obvious that the
By applying (7) and (8) to (6) it follows that assumption on which Lemma 1 relies, i.e., tHat > dyp =
R R ngr, can ever be satisfied. In what follows, it is shown that this
P(spsp #8) <P(SmL #s)+P (s ¢ S) . (9)  criterium can be satisfied for even a surprisingly small galu

PebsD Dot Dok of p, provided that the proper detection ordering is applied.



B. The SE Error Event regardless of the detection ordering= o(H), used.

The second term of (9).sk, denotes the probability that Naturally, the optimal ordering (in the sense that it mini-
the transmitted symbol vector is not included in the séfizeSpese over all orderings) may be obtained by a brute
considered by the FSD. This is equivalent to the statemdffce search. However, this would clearly be impracticahir
that the transmitted symbol vector does not belong to the g&timplementation point of view. Thus, itis reassuring town
of leaf nodes visited in the tree search [7]. Since everydranthat there are efficiently computable orderings which dire
is expanded in the FE stage of the tree search, this may \§ESity optimal in the sense that they obtain the maximal FSD
interpreted as the probability that the SE stage excludes @versity order and satisfy (15) with equality. For instanc
path through the tree corresponding to the transmittecbovecthe fast antenna subset selection strategy of [23], [26]dcou

Let IT, denote the permutation matrix corresponding to tHee used to implement such a detection ordering. The proof
ordering outlined in Section 11-B and let, 2 ITTs denote the Of optimality is given in [23]. This said, it should also be

correspoding permutation of the transmitted symbol vectdoted that diversity optimality is a nontrivial propertycathat
Further, partitions, according to for instance a fixed ordering (independentl&j would only

ST [sT sT} achieve a diversity order of
o ol 02

wheres,» € OP ands,; € O™ P corresponds to the symbols

detected in the FE and the SE stage, respectively. Similaglyy o < p < nt — 1. To see this, note that this scenario

partition H, < HIT,, according to is equivalent to the standard ZF-DFE scenario [3], with
H, = [H, H,) receive- and! = nr — p transmit-antennas. In_the oppmal

ordering scenario, it is illustrative to note that, in theesial

where H,; € C'»*"t77 and Hp, € C""*P. As the SE case ofng = nr, the FSD achieves full diversity if the

branch expanding from,, corresponds to the DFE estimateecessary and sufficient condition

of s,1 (givens,s) it follows that

peSEéP(S ¢ 8) = P(éol 7£ Sol) .

In the aboves,; denotes the DFE estimate of; obtained
based on the data model p>nr—1.

dsg fixed =(nr — v +p + 1)

dsg = (p+1)* > ngy

is satisfied, which implies

r=Hoso +v (14) This clearly represents a difference compared to the fixed

wherer 2 r —H 25,2, as the contribution of,, in r has been ordering scenario, wherg > nt — 1 is required to achieve
perfectly cancelled. full diversity. In addition, the concept of a diversity apl

A first observation based on (14) is that the error probabilibrdering stands in sharp contrast to the results of the atdnd
of the FSD does not depend on the internal ordering BfFE (V-BLAST) detector, in which case a channel dependent
columns within H,,. The error probability does, howeverdetection ordering cannot improve the diversity order [25]
depend on the overall ordering, through the subset of [27].
columns selected foH,; as well as the internal ordering Naturally, we are particularly interested in the ordering
of these columns. A similar situation is encountered in thariginally proposed for the FSD in [4] (c.f. Section II-B) as
analysis of antenna selection methods for spatial mukipte this ordering has been previously shown to provide close to
systems with linear receivers [24]. In this context, then¢ra optimal performance through simulations and is efficiently
mitter selects a subset of the available antennas (colurhnscomputable. Thus, we will complete the FSD analysis by
H) based on the realization &l and spatially multiplexed proving the diversity optimality of this ordering.
independent data streams across the selected antennag At t
receiver, a linear zero forcing (ZF) or minimum mean-square
error (MMSE) detector is used to separate the streams. tn fa(t:i The FSD Detection Ordering
determining P (S,1 # s,1) is equivalent to determining the Linear detectors and their decision feedback counter-
error probability of such a system transmitting frém n—p parts are typically analyzed through the concept of post-
antennas. processing SNR [3], which corresponds to the SNR experi-

In the context of antenna selection it has been conjectureiced by each symbol mafter linear filtering at the input to
that the maximum diversity order of such a system is [23] the threshold detector. For the system model in (14), the (ZF
das 2(ng — 1+ 1)(nw — 1 + 1) minimum post-processing SNR is defined by

1
=(nr —nt)(p+1)+(p+ 1)2- (ZF) & i
Pmin S o [(HE Hp) 10

This conjecture was also recently proven under the assampti _ .
of a ZF or a ZF-DFE receiver [25], the latter being equivaled®r 7 = 1,...,nt —p, and the diversity order of the ZF and
to the SE stage of the FSD. Specifically, for the FSD it followde ZF-DFE detectors is lower bounded according to

from [23], [25] that . (ZF)
log P (So1 # so . logP <1
dsg = lim 0g (S 1 7& S 1) > lim 0g (pmln )

dsg < dsp.opt Z(nr —n1)(p+ 1)+ (p+ 1)%, (15) 720 log 02 T 5250 log 02 '
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see, e.g., [23]. Furthermore, noting théfii) can be lower )\ (HEH,;) = A1(Qp) and the lower bound on; (HEH,;)

bounded as ° follows. The upper bound follows directly from the interilag
(2ZF) - A1 (Hg Hop) property of eigenvalues of principal submatrices [28]. B
mneT e npo? The interpretation of the corollary is that the minimum
where X\ (HI H,,) denotes the smallest eigenvaiuef e€igenvalue offLfiH,; behaves similarly to\,.; (H"H). In
HY H,, [24], it follows that particular, it follows directly that

logP (M (HEH,) < 2) log P (A (Hgi Ho) < )

> i . li
dsg 2 lim Jog (16) Pt log z
Thus, the bound in (16) quantifies the notion that the error iy 08P (Ap+1(H'H) < z)
probability of the ZF detector is characterized by the minim z—0 log z
eigenvalue of the channel matrix. In particular, computimg =(nr —n1)(p+1)+ (p+1)%, (20)

limit on the right hand side of (16) for the FSD detection
ordering and combining the result with that of (15) yields where the last equality follows by [29, Th. 1] or as a special
(tight) bound on the FSD diversity order. case of [30, Th. 4]. Combining (20) with (16), yields a lower
Although closed form expressions for the distribution af thoound ondsg that coincides with the upper bound in (15). It
eigenvalues oH!, H,, are difficult to obtain, it is possible to follows directly that
bound these eigenvalues in terms of the eigenvalues of the 5
Gram matrix of the full channel matriEI"H. To this end, dsp = (nr —nr)(p+1) + (p+1)°. (21)
we consider the following key results:
Lemma 2: Let A € C"*™ be a positive semi-definite (PSD)
matrix. Further, lety be given by

Finally, inserting (21) into (13) yields the diversity ordaf
the FSD. We formalize this in the following theorem, which
is the main contribution of this paper:

q = argmax[A '], (17) Theorem 4. The FSD diversity order is given by
J

and letA; be the principal submatrix obtained by deleting the drsp = min(ng, (ng —nr)(p+1)+ (p+1)*). (22)

gth row and column ofA?. Then o o )
It is important to note that this diversity result has been

Ni(Aq) > l/\i+1(A), i=1,...,n—1. (18) obtained by looking only at the ordering that takes place in
n the FE stage, represented by (17). Thus, selecting thelsigna
Proof: Given in Appendix B. with the largest post-processing noise amplification in the FE
Corollary 3: Given the FSD detection ordering outlined irstage is a sufficient condition to achieve (21). Furthermloye
Section II-B, the smallest eigenvalue Hit, H,,; satisfies ordering the signals to be detected in the SE stage accaling
At (HPH) > A (HE H,y ) > wdyy s (HPH) (19) tbhuPi Ef?ugﬂiﬁr&?\?ériﬁyaggmg?] coding gain can be achieved

where | Different relevant conclusions regarding the performaufce
Ké(”Ti_'p)' <0 the FSD can be drawn from (22). Firstly, for an arbitrary
nr.

MIMO system following (1), the FSD has the same diversity
Proof: Let Q2 H"H e C"t*"r and letQ, be a principal @S the MLD providedng —nr)(p+1)+ (p+1)* > ng. Fur-
submatrix obtained by sucessively removipgolumns and thérmore, the FSD asymptotically provides ML p2erf0rmance
rows from Q accoring to the criterion in (17). By repeated” the high-SNR regime ifng —nr)(p+1)+ (p+1)° > ng,

application of Lemma 2 it follows that as indicated by Lemma 1. In particular, if we consider the
numerical results of Section II-D and [4], the following can
M(Qp) 2_71,\2((;21)_1) now be stated:
(nr —p+ )1 1) In a4 x4 system, the FSD witlhh = 1 provides the same

A3(Qp—2) diversity as the MLD since = ,/nt — 1. However,
it can be seen in Fig. 2 how the (de)coding loss is
negligible, effectively yielding quasi-ML performance.
2) In an 8 x 8 system, the FSD witlp = 2 provides
> (e —p+ 1) (nr —0) Ap+1(Qo) asymptotical ML performance singe> ,/nt — 1. .
—Api1(Q) It should be noted that t_hose results are _con_1ple_tely inde-
pendent of the constellatio® used, further indicating the
where Qo = Q by definition. SinceH, H,; equalsQ, up relevance of the FSD as a MIMO detection algorithm.
to a permutation of the rows and columns it holds that Finally, although the study presented here has concedtrate
on the assumption of uncorrelated Rayleigh fading due to its
tn the rest of the papen1(Q) < ... < An(Q) denote the ordered mathematical tractability, it follows by [32] that the résu
eigenvalues of am x n matrix Q. . . . L
2|t should be noted that (17) corresponds to one iterationhef ESD hold true also for a Iarge class of fadlng dlstrlbutlonsludmg
ordering for the FE stage, as shown by (5). correlated Ricean channels.

e —p+ e —p+2)




IV. CONCLUSION APPENDIXB

This paper presents an error probability analysis of the PROOF OFLEMMA 2

recently proposed FSD algorithm in the context of MIMO Note first that it can be assumed, without loss of generality,
detection. The FSD algorithm combines a fixed complexifhat A is such thay = 1. This follows since the statement of
search over the tree representation of a spatially mukgele | emma 2 is invariant to permutations of the rows and columns

MIMO system with a specific detection ordering. It has beegf A. Let the eigenvalue decomposition Af be given by
previously shown to provide quasi-ML performance and re-

sults in a highly optimized hardware implementation coregar A= iﬁ‘u' o 23)

to the original SD, especially for large number of antennas e

and constellation orders. However, no analytic proof of its

performance was available. where (for notational simplicity)y; £\;(A) > 0 for i =
By studying the FE and SE stages in the FSD and its...,n denotes théth eigenvalue ofA, such thaty; < ... <

detection ordering, this paper proves that the FSD can geoviy,,, andu; are the corresponding eigenvectors. By partitioning

the same diversity order as the MLD. In addition, dependirige eigenvectors oA according to

on the number of levels considered in the FE stage, the FSD

can also yield asymptotically ML performance in the high- u; = {Ui] (24)

SNR regime. In particular, it has been shown that, by selgcti Wi

the signals with théargest post-processing noise amplificationyherer; e C andw,; € C"~* the inverse ofA can be obtained

in the FE stage of the algorithm, the diversity of the SE stagg

grows beyond the diversity order of the MLD. This result n

has been linked to the concept of transmit antenna selection Al — anluiuH

where a subset of the transmit antennas are selected to send

data streams over the wireless channel. In essence, by fully

enumerating (carefully selected) layers in the tree search, it is = Z n; { ’} w?]

possible to remove the influence of thaveakest eigenmodes

on the subsequent ZF-DFE step. In addition, an express®n ha |v; |2 W

been obtained to establish the number of levels that need to 7277 { Win] : (25)

be considered in the FE stage in an arbitrary MIMO system if ’

full diversity or asymptotic ML performance is to be achidve Note that the first (and maximal) diagonal elementAof! is

iven b
APPENDIXA g y

PROOF OFLEMMA 1 A0 =) i Mol (26)
Sincedsg > dwvr, there exist® > 0 such thatdsg — dur, —

26 > 0. For sufficiently smalls? it follows by (11) and (12) For the remaining diagonal elements it follows that
that

log pemL dair+6 @ 1 -
—222 < dyp + 6 € penr, > (07) Pt A1 > AN
log o2 Z:ngaxn[ Ji 2 (n—1) g[ Jis
and | '
0g PeSE dsm—3 - —
> dgg — 0 < pesp < (02)%5 79 ®
e o L g
It follows that o -
2\dsp—5 _
PesE _ (0%)dse — (o?)dse—dnn =26 Hlwill?
DeML — (0-2)dML+5
for sufficiently smallo?, which implies that (C) ! Zn — |vi]?) (27)
I PeSE '
imsup —— =0

020 PeML

) , where (a) follows since the maximum diagonal value must
sincedsg — dyr, — 26 > 0. By (9) it follows that

be larger than or equal to the average; (b) follows from the

PeRSD - PeML | DeSE expansion in (25); and (c) is due @ >+ ||w;||? = ||w;||* = 1.
DPeML ~ PeML  PeML The assumption that the maximal diagonal valueAof! is
and given by [A~1];; (i.e., ¢ = 1) is equivalent to
. PeFsSD
limsup—— < 1.
02—0 PeML [A_l]ll > _IIQlaX [A_l]ii, (28)
However, as e
PelSD 4 which through (26) and (27) yields

PeML
for any o2 > 0 (due to the optimality of MLD) the assertion =1, 12 1 —1(1 _ 112
- ;- oil” = o (L= fwl%).
D =P

of the lemma follows. [ |



or equivalently

Zm Dlvil* = (1 = [vi]*)]

:Zni_l(n|vi|2 —-1)>0. (29)
=1

Normalizing (29) by dividing byy; ! yields

n
Zn— nlv;|? — 1)
l

i=1

Z: ,2 zn:n:l . an
k

1=k+1
n n k+1
<Yl 30 e - -3
- impg1 et mo
k nn k+1 "
= DIRE N S DR <)
i=1 k1, 500 i
By introducingr, defined according to
k
TEY |uil?, (31)
i=1
and noting that
n
Z loi?=1—-1 (32)

i=k+1
the last line of (30) yields

nm m i
nr + (1-7)—1- ——>0. 33
77k+1 Z Ui MNk+1 (33)

Further, leta be defined accordlng to

a2 M (34)
MNk+1
By the interlacing property for eigenvalues of principabsu
matrices [28] it follows that

Me < Ae(A1) < iy -

IEEE TRANSACTIONS ON SIGNAL PROCESSING

Differentiating f («, n, k) with respect tox yields

0 n(k—-2)+2
%f(a,n, k) = n(l— «)?

which implies thatf (a, n, k) is increasing inx for k£ > 2 and
therefore it follows that

T>

S~

(37)

which is obtained by lettingyx = 0 in (36). Whenk = 1 it
follows from (36) that
l+a—an
> - 38
= n(l —a) (38)

The two cases in (37) and (38) will be handled separately
starting withk = 1 and (38).

To this end, assume théat = 1 and note thatA; can be
written, using (23) and (24), as

A=) miww,
i=1
(B + 3 Bt
— 112
=2
n
=12 <ozw1w{{ + Z WZ‘W?> (39)
i=2
where
M _ o and &>1 =2,...,n,
2 2

has been used in the last inequality. In the above, we have
used> (<) to denote the partial matrix ordering induced by
the positive semi-definite cone, i.e., for Hermitian magsic
X, Y € C™*" the notationX > Y (Y =< X) means that

X —Y is positive semi-definite. In particulaX > Y implies

that \;(X) > \;(Y) for i =1,...,r. Defining

B2 aw,wi + Zwiw? e cr—Hx(n-1)
i—2

Thus, whenever, > n~'n.1 the assertion in (18) is true we obtain from (39) thatA; > 7,B. Thus, A\ (A;) >

for any principal submatrix ofA, regardless of the selectlonm)\l( B) and what remains to be shown is thatB) > n~1.

criterium. Therefore, in order to prove the lemma, we neeg

only to consider the opposite casg < n~'n,41. Note also
that this assumption implies that

m = Qg1 > anng > ann;, i=1,..0k, (35)

and thata < n~! which is obtained from (35) fof = 1. In
particular, it follows by (35) that

n > an

i
for i = 2,..., k which together with (33) implies that

nt+na(l—7)—1—ank—1)—a>0

or equivalently

l+a+an(k—2) 4
T > =

> T R k) (30)

this end, note that, singe < 1, it follows that

n
= g w,wH =
i=1

and, in particular);(B) <1fori=1,...,n—1. At the same
time,

ZA (B) = afwi| +Z||vw||2 (40)
Since |v;|? + ||lw;||? = ||lw|/? = 1 from (24), it follows

from (31) that|wy||? =1 — 7, sincek = 1, and

n
ZHWZH? dA-|ul)=n-2+7.
=2



Combining this with (40) yields [6]

ni)\i(B) =a(l—-7)+n—-2+71

=1

(7]

14+«

>a+n2—2n+1 _

(n—2)+

n
where (38) was used to establish the inequality. Equivigient

(8]

El

n—1
1+«
B) > —2)— (B 41
Bz S (-2 -3 ME). @)
However, since\;(B) < 1 for i = 2,...,n — 1 this implies (10]
that 1 )
MB)> Y ) —(n—2) >~ [y
n
which proves that\;(A;) > n ') (A) since A\ (A;) >

eA1(B) andn, £ Ao (A). 12]
Whenk > 2 it is sufficient to consider the lower bound on
A, given by [13]

A, - Z ﬁiWiW? = nk+1C (42)

[14]
i=k+1
where N [15]
c2 > wiw! <1 (43)
i=k+1 [16]
Since the rank ofC is at mostn — k it follows that
n—1 n—1
D> X(C) =) Ni(C) =Tx(C) (17]
1=k =1
n 18
=3 Wil =n—k—l4r e
1=k+1

where [v;|? + ||w;||* = 1 and (32) was used to establish thél9]
last equality. Similar to before,

n—1
M(C)ZT+m—k=1)— Y X(C)> [20]
i=k+1
where);(C) < 1 and (37) was used. Using (42) yields

Ae(A1) > g1 Ae(C) > n ' Aig1(A)

S

[21]

[22]
sincen,1 2 A\xy1(A). This concludes the proof.
[23]
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