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Abstract—The fixed-complexity sphere decoder (FSD) has been
previously proposed for multiple input-multiple output (M IMO)
detection in order to overcome the two main drawbacks of the
sphere decoder (SD), namely its variable complexity and its
sequential structure. Although the FSD has shown remarkable
quasi-maximum likelihood (ML) performance and has resulted
in a highly optimized real-time implementation, no analytical
study of its performance existed for an arbitrary MIMO system.
Herein, the error probability of the FSD is analyzed, proving that
it achieves the same diversity as the maximum likelihood detector
(MLD) independent of the constellation used. In addition, it can
also asymptotically yield ML performance in the high-signal-to-
noise ratio (SNR) regime. Those two results, together with its
fixed complexity, make the FSD a very promising algorithm for
uncoded MIMO detection.

Index Terms—Fixed-complexity sphere decoder (FSD), multi-
ple input-multiple output (MIMO), diversity order, signal detec-
tion

I. I NTRODUCTION

The use of multiple antennas at both ends of a wireless
link, i.e., multiple input-multiple output (MIMO), has become
the most relevant technology to improve the capacity and
spectral efficiency of wireless communication systems [2].
Concentrating on the receiver end, the design and implemen-
tation of efficient detection algorithms is of vital importance

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

J. Jaldén was with the KTH Signal Processing Lab, School of Electrical
Engineering, Royal Institute of Technology, Stockholm, Sweden. He is now
with the Institute of Communications and Radio-Frequency Engineering,
Vienna University of Technology, Gußhausstr. 25-29 // 389,A-1040 Vienna,
Austria. (e-mail: joakim.jalden@nt.tuwien.ac.at).

L. G. Barbero was with the Institute for Digital Communications, Joint Re-
search Institute for Signal & Image Processing, The University of Edinburgh,
EH9 3JL Edinburgh, U.K. He is now with the ECIT, Queens University of
Belfast, NI Science Park, Queens Road, Queens Island, BT3 9DT Belfast,
U.K. (e-mail: l.barbero@ecit.qub.ac.uk).

B. Ottersten is with the ACCESS Linnaeus Center, KTH Signal Processing
Lab, Royal Institute of Technology, Osquldas väg 10, S-10044 Stockholm,
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to benefit from the additional degrees of freedom available in
MIMO systems [3]. This paper presents the error probability
analysis of a recently proposed detection algorithm, the fixed-
complexity sphere decoder (FSD) [4], that provides good
performance at high-SNR and that is optimized for a fully-
pipelined real-time hardware implementation [5], [6].

We consider a spatially-multiplexed MIMO system withnT

transmit andnR receive antennas, denoted asnT × nR. The
vector of received symbolsr ∈ CnR can be modeled as

r = Hs + v , (1)

where s = [s1 · · · snT
]T ∈ CnT denotes the vector of

transmitted symbols taken independently from an arbitrary
constellationO of M points withE[|si|2] = 1/nT and where
v ∈ C

nR is the vector of independent complex Gaussian noise
samplesvi ∼ CN (0, σ2). The channel matrixH ∈ CnR×nT

has independent elementshij ∼ CN (0, 1) representing a
wireless propagation environment with uncorrelated Rayleigh
fading [3]. We assume that the channel is perfectly known at
the receiver and thatnR ≥ nT.

The maximum likelihood detector (MLD) for this scenario
is given by

ŝML = arg min
s∈OnT

‖r − Hs‖2 . (2)

However, the straightforward implementation of the MLD is
of exponentialO(MnT) complexity in the number of transmit
antennas, making it unfeasible for high-dimensional MIMO
systems. Although a more efficient MLD implementation is
provided by the sphere decoder (SD) [7], it can also be shown
to have an exponential complexity (in the worst case as well
as in the average case) ofO(MγnT) with γ ∈ (0, 1] [8]. In
addition, the SD is a sequential algorithm that has a variable
complexity, complicating its real-time hardware implementa-
tion [9].

Different alternatives have been proposed to reduce or
limit the complexity of the SD while approaching its ML
performance. Examples include but are not limited to:

• Combination of the SD with some form of channel
matrix ordering to reduce the average complexity of the
algorithm [10]. However, the resulting algorithm still
suffers from a variable complexity and needs a sequential
search.

• Addition of geometric or probabilistic methods to reduce
the complexity of the SD as in [11]. In this case, their
additional operations and variable complexity make them
unsuitable for hardware implementation.
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• Use of theK-Best lattice decoder [12] (equivalent to the
sequentialM-algorithm [13]) to approach quasi-ML per-
formance with fixed complexity. This approach provides
a fixed complexity but it is typically higher than the
complexity of the SD if quasi-ML performance is to be
guaranteed [12].

The FSD is a fixed complexity algorithm that has been
proposed in [4] and implemented in real-time on a field-
programmable gate array (FPGA) platform in [5], [6] as an
alternative to the aforementioned algorithms. Previous numer-
ical studies have also shown quasi-ML performance [4]. In
this paper we show that the FSD maintains the diversity order
of the MLD with a complexityO(M

√
nT), which represents

an advantage over the exponentially complex sphere decoder
(SD). We further analyzse the error probability of the FSD
and show that it has a negligible performance degradation
compared to that of the MLD in the high-signal-to-noise ratio
(SNR) regime. Specifically, it is shown that

lim
σ2→0

P (ŝFSD 6= s)

P (ŝML 6= s)
= 1 , (3)

which indicates that the FSD, in addition to having the
same diversity as the MLD, asymptotically achieves ML
performance in the high-SNR limit. The diversity and error
probability performance achieved by the FSD together with its
fixed complexity makes the FSD a very attractive algorithm
to solve the detection problem in next-generation MIMO
systems.

The structure of the paper is as follows: Section II describes
the FSD algorithm and presents simulation results showing its
quasi-ML performance. Section III analyzes the error proba-
bility of the FSD, taking into account the detection ordering,
to give valuable insight into the simulation results presented
in Section II. Finally, conclusions are drawn in Section IV.

II. T HE FIXED-COMPLEXITY SPHEREDECODER

The description of the FSD is included in this section for
completeness. The algorithm has been previously proposed
for the detection of uncoded MIMO systems using quadrature
amplitude modulation (QAM) constellations [4]. It overcomes
the two main drawbacks of the SD from an implementation
point of view, i.e., its variable complexity depending on the
noise level and the channel conditions and the sequential
nature of its tree search phase.

The FSD achieves quasi-ML performance by combining a
specific channel matrix ordering with a search over only a
fixed number of lattice vectorsHs, generated by a small subset
S ⊂ OnT , around the received vectorr. The transmitted vector
s ∈ S with the smallest Euclidean distance is then selected as
the solution. The process can be written as

ŝFSD = argmin
s∈S

‖r − Hs‖2 . (4)

The FSD, analogously to the SD, can be seen as a con-
strained tree search through a tree withnT levels whereM
branches originate from each node [7]. Thus, the solution to(4)
can be obtained recursively starting fromi = nT and working
backwards untili = 1, evaluating all the paths belonging

root

-1-j -1+j 1-j 1+j FE

SE

Fig. 1. FE and SE stages in the FSD tree search applied to a4 × 4 system
with 4-QAM modulation.

to S [4]. The paths in the tree followed by the FSD are
determined by fixing the number of branches per node that
are expanded in each level, creating the subsetS. In the case
of the SD, on the other hand, the number of branches per node
expanded in each level is a random variable that depends on
the particular level, the search sphere, the channel conditions
and the noise level [10] and its average reduces asi decreases
(i.e., traversing down the tree) [4].

Although considerable research has been carried out to
reduce that average number of branches per node expanded per
level by means of a specific channel matrix ordering [10], [14],
the resulting algorithms suffer from the same drawbacks as the
original SD: variable complexity and a sequential structure.
The FSD, on the other hand, takes a completely different
approach. It makes use of the channel matrix ordering to fix
the number of branches per node while providing a quasi-
ML performance. This results in a more optimized hardware
implementation of the algorithm compared to that of the
SD [5], [6].

A. Generation of the Subset S
The subset searched during the tree phase of the FSD is

generated by defining the number of branches per nodeni

that are expanded per level fori = 1, . . . , nT. Thus, the total
number of paths followed by the FSD is

∏nT

i=1 ni where1 ≤
ni ≤ M . In each level, theni branches are expanded following
the Schnorr-Euchner enumeration [15] so that the first branch
corresponds to the decision-feedback equalization (DFE) path.

Although it is difficult to provide a comprehensive analysis
of the number of nodes that need to be expanded to achieve
quasi-ML performance, the FSD algorithm proposes a general
method that can be used for an arbitrary constellation and for
any number of antennas [4]. The method consists of having
ni ∈ {1, M} for i = 1, . . . , nT, and may be described as
follows.

• Initially, a full search is performed in the firstp levels,
expanding allM branches per node, i.e.,ni = M for
i = nT, . . . , nT − p + 1. This will herein be denoted as
the full expansion (FE) stage of the algorithm.

• Secondly, a single search is performed in the remaining
nT − p levels, expanding only one branch per node
following the DFE path, i.e.,ni = 1 for i = nT−p, . . . , 1.
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This will be denoted as the single expansion (SE) stage
of the algorithm.

An example is given in Fig. 1 for the constrained tree search
required in a4 × 4 system with 4-QAM modulation. Here,
the FE stage corresponds to only one level, i.e.,p = 1. In
Section III, we show that this scheme maintains the diversity
of the MLD.

The two-stage constrained tree search of the FSD is inde-
pendent of the noise level and the channel conditions, resulting
in a fixed complexity detector as opposed to the variable
complexity of the SD. The total number of Euclidean distances
calculated in the FSD isMp, and simulations have shown that
quasi-ML performance is achieved withMp ≪ MnT , i.e.,S is
a very small subset ofOnT , if the two-stage constrained search
is combined with a special FSD channel matrix ordering [4].

B. FSD Channel Matrix Ordering

The FSD channel matrix ordering determines the detection
ordering of the signalssi, for i = 1, . . . , nT, according to the
number of branches per node that are expanded in each leveli.
ThenT columns ofH are ordered iteratively so that the signals
with the largest post-processing noise amplification, as defined
in [16], are detected in the FE stage. On the other hand, the
signals with the smallest post-processing noise amplification
are detected in the SE stage.

The steps performed in every iteration are the following, for
i = nT, . . . , 1:

1) The matrixQnT−i = HH
nT−iHnT−i is calculated, where

HnT−i is the channel matrix with thenT − i columns
selected in previous iterations removed. Equivalently,
QnT−i is the principal submatrix ofQ, obtained by
removingnT − i rows and columns fromQ.

2) Thekth column is selected according to

k =







arg max
j

[Q−1
nT−i]jj , if ni = M ,

arg min
j

[Q−1
nT−i]jj , if ni = 1 ,

(5)

where we assume the correct mapping is done from
index j to index k to take into account the columns
of H already removed.

Intuitively, if the maximum number of branches per node
is expanded in one level, therobustness of the signal is not
relevant to the final performance, therefore, the signal that
suffers the largest post-processing noise amplification can
be detected in that level. The opposite occurs when only
one branch per node is expanded in a level, the signal with
the smallest post-processing noise amplification needs to be
detected in this level in order not to dramatically worsen the
performance.

From a complexity point of view, the FSD ordering of the
channel matrix has exactly the same complexity as the vertical-
Bell Labs layered space time (V-BLAST) ordering proposed
in [16]. Different optimized versions of the latter exist inthe
literature that could be used for an implementation of the FSD
ordering [17].

C. Relation to other Detectors

Naturally, some aspects of the FSD are related to those of
other detectors (apart from the obvious relation to SD) and
one of the earliest such detectors is the ML-DFE detector,
proposed in [18]. It should however be noted that the FSD
provides a significant performance improvement over the ML-
DFE. The crucial difference between the detectors is that ML-
DFE corresponds to a search where only one path in the FE
stage is expanded through the SE stage, as opposed to the
FSD, where all paths in the FE stage are expanded.

For the specific case ofnT = nR = 4 and p = 1, the
FSD performs the same tree search as the Chase detector
with list size M [19], or the parallel detector for V-BLAST
systems proposed in [20]. However, the FSD outperforms both
algorithms due to a different channel matrix ordering tailored
to the two-stage search. The FSD channel matrix ordering in
the case ofnT = nR = 4 and p = 1 corresponds to the
ordering independently proposed in [21] and applied to the
Chase detector. It should also be noted that detection orderings
based on selecting the signals with thelargest post-processing
noise amplification have also been proposed in the context of
transmit antenna selection (AS) as a means of maximizing the
AS gain of MIMO systems [22], [23].

On a final note we mention that the algorithms in [19] -
[21] were proposed as a means of improving the performance
of the V-BLAST detector by performing several detections
in parallel. On the other hand, the FSD represents a general
algorithm proposed in the context of achieving quasi-ML
performance in MIMO systems.

D. Performance Example

In this section, a numerical example of the performance of
the FSD is given showing the quasi-ML performance achieved
in uncoded MIMO detection [4]. The error probability as
a function of the SNR has been used as a performance
measure, defined aspeFSD ,P (ŝFSD 6= s) for the FSD and
peML ,P (ŝML 6= s) for the MLD. The SNR is obtained
averaging over the channel realizations at one receive antenna
and is equal to SNR= 1/σ2.

Fig. 2 shows the error probability of the FSD in a system
with nT = nR = 4 system using 4-,16- and 64-QAM
modulation. The results have been obtained using 40,000
channel realizations with 300 symbols transmitted in every
channel realization. It can be seen how the FSD practically
yields ML performance, independent of the noise level and the
constellation order. In all cases, the FSD has been simulated
with p = 1 so that the signal with thelargest post-processing
noise amplification is detected in the FE stage. Remarkably,for
the case of 64-QAM, the performance degradation is of only
0.03 dB at SNR = 30 dB while calculating only 64 Euclidean
distances, as opposed to the644 = 16, 777, 216 Euclidean
distances considered in the MLD. A similar example where
nT = nR = 8 andp = 2 is given in [4, Fig. 5].

Thus, simulations show that the FSD can be used to
approach ML performance in MIMO detection with the ad-
vantage of having a fixed complexity as opposed to the SD [4].
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Fig. 2. Error probability of the FSD and the MLD as a function of the SNR
in a 4 × 4 system.

III. E RROR PROBABILITY

The purpose of this Section is to provide an analytical
explanation of the results observed in Section II-D and [4],
assessing the performance of the algorithm in terms ofnT, nR

andp. In particular, we characterize the high-SNR behavior of
the FSD, looking at the diversity order of its error probability.
The result shows that the FSD achieves the same diversity as
the MLD if the appropriate number of levelsp are selected
for the FE stage. In addition, the FSD also asymptotically
yields ML performance in the high-SNR regime, supporting
the quasi-ML performance observed in Section II-D and [4].

A. The FSD Error Probability

When considering the error probability of the FSD it is
useful to separate the error event into two mutually exclusive
events depending on whether the transmitted vectors belongs
to the set of hypotheses considered by the detector. Specifi-
cally,

peFSD , P (ŝFSD 6= s)

= P (ŝFSD 6= s ∩ s ∈ S) + P (ŝFSD 6= s ∩ s /∈ S) (6)

whereS is given in (4). The first term on the right hand side
of (6) asserts thats belongs to the set of hypotheses considered
by the FSD but does not minimize (4). This implies thats will
not minimize (2) and it follows that

P (ŝFSD 6= s ∩ s ∈ S) ≤ P (ŝML 6= s) . (7)

The second term on the right hand side of (6) asserts that the
transmitted vector does not belong to the set of hypotheses
considered. In this case it is impossible for the FSD to decide
in favor of the transmitted message and it follows that

P (ŝFSD 6= s ∩ s /∈ S) = P (s /∈ S) . (8)

By applying (7) and (8) to (6) it follows that

P (ŝFSD 6= s)
︸ ︷︷ ︸

peFSD

≤ P (ŝML 6= s)
︸ ︷︷ ︸

peML

+ P (s /∈ S)
︸ ︷︷ ︸

peSE

. (9)

Thus, if we considerpeML and peSE to be of different
orders of magnitude, the error probability of the FSD can be
characterized by the maximum ofpeML andpeSE. In particular,
wheneverpeSE ≪ peML the FSD will experience close to
optimal performance.

In the high-SNR regime it follows from (9) that the diversity
order of the FSD is lower bounded according to

dFSD , lim
σ2→0

log peFSD

log σ2
≥ min(dML, dSE) , (10)

where

dML , lim
σ2→0

log peML

log σ2
= nR (11)

and

dSE , lim
σ2→0

log peSE

log σ2
(12)

denote the diversity of the MLD and the SE stage respectively.
Although (10) initially presents a lower bound, it can be imme-
diately shown that the bound is actually tight by considering
the following two cases:

1) dSE ≥ dML = nR: the FSD directly achieves the same
diversity as the MLD,dFSD = nR, sincepeFSD ≥ peML.

2) dSE < dML: in this case, (10) yieldsdFSD ≥ dSE. In
addition, (9) indicates thatpeFSD ≥ peSE, i.e., dFSD ≤
dSE. Thus, the diversity of the FSD isdFSD = dSE.

Therefore, we can rewrite (10) as

dFSD = min(nR, dSE) (13)

which completely characterizes the FSD diversity in terms of
dML anddSE.

In addition, it can be seen that in the particular case of
dSE > dML, the bound in (9) yields a performance guarantee
that is even stronger than full diversity. Specifically, it follows
that also the decoding loss will become negligible at high-
SNR. To see this, note thatdSE > dML implies that the
second term in (9) tends to zero at a faster rate than the
first term, indicating that the penalty due to sub-optimality
will be negligible at high-SNR. The idea, briefly introduced
in Section I, is formalized by the following lemma:

Lemma 1: Let dML and dSE be defined according to (11)
and (12). IfdSE > dML it follows that

lim
σ2→0

peFSD

peML
= 1 .

Proof: Given in Appendix A.

In light of (13) and Lemma 1, it is clear that it is sufficient
to computedSE in order to complete the analysis of the FSD
error probability and to establish under which circumstances
the FSD provides quasi-ML performance. Given the structure
of the FSD,dSE would depend on the number of levelsp of
the SE stage. However, it is not immediately obvious that the
assumption on which Lemma 1 relies, i.e., thatdSE > dML =
nR, can ever be satisfied. In what follows, it is shown that this
criterium can be satisfied for even a surprisingly small value
of p, provided that the proper detection ordering is applied.
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B. The SE Error Event

The second term of (9),peSE, denotes the probability that
the transmitted symbol vector is not included in the set
considered by the FSD. This is equivalent to the statement
that the transmitted symbol vector does not belong to the set
of leaf nodes visited in the tree search [7]. Since every branch
is expanded in the FE stage of the tree search, this may be
interpreted as the probability that the SE stage excludes the
path through the tree corresponding to the transmitted vector.

Let Πo denote the permutation matrix corresponding to the
ordering outlined in Section II-B and letso ,ΠT

o s denote the
correspoding permutation of the transmitted symbol vector.
Further, partitionso according to

sT
o =

[
sT
o1 sT

o2

]

whereso2 ∈ Op andso1 ∈ OnT−p corresponds to the symbols
detected in the FE and the SE stage, respectively. Similarly,
partitionHo ,HΠo according to

Ho =
[
Ho1 Ho2

]

where Ho1 ∈ CnR×nT−p and Ho2 ∈ CnR×p. As the SE
branch expanding fromso2 corresponds to the DFE estimate
of so1 (given so2) it follows that

peSE ,P (s /∈ S) = P (ŝo1 6= so1) .

In the above,̂so1 denotes the DFE estimate ofso1 obtained
based on the data model

r̃ = Ho1so1 + v (14)

wherer̃, r−Ho2so2, as the contribution ofso2 in r has been
perfectly cancelled.

A first observation based on (14) is that the error probability
of the FSD does not depend on the internal ordering of
columns within Ho2. The error probability does, however,
depend on the overall ordering,o, through the subset of
columns selected forHo1 as well as the internal ordering
of these columns. A similar situation is encountered in the
analysis of antenna selection methods for spatial multiplexing
systems with linear receivers [24]. In this context, the trans-
mitter selects a subset of the available antennas (columns of
H) based on the realization ofH and spatially multiplexed
independent data streams across the selected antennas. At the
receiver, a linear zero forcing (ZF) or minimum mean-square
error (MMSE) detector is used to separate the streams. In fact,
determiningP (ŝo1 6= so1) is equivalent to determining the
error probability of such a system transmitting froml = nT−p
antennas.

In the context of antenna selection it has been conjectured
that the maximum diversity order of such a system is [23]

dAS ,(nR − l + 1)(nT − l + 1)

=(nR − nT)(p + 1) + (p + 1)2 .

This conjecture was also recently proven under the assumption
of a ZF or a ZF-DFE receiver [25], the latter being equivalent
to the SE stage of the FSD. Specifically, for the FSD it follows
from [23], [25] that

dSE ≤ dSE,opt ,(nR − nT)(p + 1) + (p + 1)2 , (15)

regardless of the detection ordering,o = o(H), used.
Naturally, the optimal ordering (in the sense that it mini-

mizes peSE over all orderings) may be obtained by a brute
force search. However, this would clearly be impractical from
an implementation point of view. Thus, it is reassuring to know
that there are efficiently computable orderings which aredi-
versity optimal in the sense that they obtain the maximal FSD
diversity order and satisfy (15) with equality. For instance,
the fast antenna subset selection strategy of [23], [26] could
be used to implement such a detection ordering. The proof
of optimality is given in [23]. This said, it should also be
noted that diversity optimality is a nontrivial property and that
for instance a fixed ordering (independent ofH) would only
achieve a diversity order of

dSE,fixed ,(nR − nT + p + 1)

for 0 ≤ p ≤ nT − 1. To see this, note that this scenario
is equivalent to the standard ZF-DFE scenario [3], withnR

receive- andl = nT − p transmit-antennas. In the optimal
ordering scenario, it is illustrative to note that, in the special
case ofnR = nT, the FSD achieves full diversity if the
necessary and sufficient condition

dSE = (p + 1)2 ≥ nR

is satisfied, which implies

p ≥ √
nT − 1 .

This clearly represents a difference compared to the fixed
ordering scenario, wherep ≥ nT − 1 is required to achieve
full diversity. In addition, the concept of a diversity optimal
ordering stands in sharp contrast to the results of the standard
DFE (V-BLAST) detector, in which case a channel dependent
detection ordering cannot improve the diversity order [25],
[27].

Naturally, we are particularly interested in the ordering
originally proposed for the FSD in [4] (c.f. Section II-B) as
this ordering has been previously shown to provide close to
optimal performance through simulations and is efficiently
computable. Thus, we will complete the FSD analysis by
proving the diversity optimality of this ordering.

C. The FSD Detection Ordering

Linear detectors and their decision feedback counter-
parts are typically analyzed through the concept of post-
processing SNR [3], which corresponds to the SNR experi-
enced by each symbol ins after linear filtering at the input to
the threshold detector. For the system model in (14), the (ZF)
minimum post-processing SNR is defined by

ρ
(ZF)
min , min

j

1

nT[(HH
o1Ho1)−1]jjσ2

for j = 1, . . . , nT − p, and the diversity order of the ZF and
the ZF-DFE detectors is lower bounded according to

dSE = lim
σ2→0

log P (ŝo1 6= so1)

log σ2
≥ lim

σ2→0

log P(ρ
(ZF)
min ≤ 1)

log σ2
,
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see, e.g., [23]. Furthermore, noting thatρ
(ZF)
min can be lower

bounded as

ρ
(ZF)
min ≥ λ1(H

H
o1Ho1)

nTσ2
,

where λ1(H
H
o1Ho1) denotes the smallest eigenvalue1 of

HH
o1Ho1 [24], it follows that

dSE ≥ lim
x→0

log P
(
λ1(H

H
o1Ho1) ≤ x

)

log x
. (16)

Thus, the bound in (16) quantifies the notion that the error
probability of the ZF detector is characterized by the minimum
eigenvalue of the channel matrix. In particular, computingthe
limit on the right hand side of (16) for the FSD detection
ordering and combining the result with that of (15) yields a
(tight) bound on the FSD diversity order.

Although closed form expressions for the distribution of the
eigenvalues ofHH

o1Ho1 are difficult to obtain, it is possible to
bound these eigenvalues in terms of the eigenvalues of the
Gram matrix of the full channel matrix,HHH. To this end,
we consider the following key results:

Lemma 2: Let A ∈ Cn×n be a positive semi-definite (PSD)
matrix. Further, letq be given by

q = argmax
j

[A−1]jj . (17)

and letA1 be the principal submatrix obtained by deleting the
qth row and column ofA2. Then

λi(A1) ≥
1

n
λi+1(A) , i = 1, . . . , n − 1 . (18)

Proof: Given in Appendix B.
Corollary 3: Given the FSD detection ordering outlined in

Section II-B, the smallest eigenvalue ofHH
o1Ho1 satisfies

λp+1(H
HH) ≥ λ1(H

H
o1Ho1) ≥ κλp+1(H

HH) (19)

where

κ ,
(nT − p)!

nT!
> 0

Proof: Let Q,HHH ∈ CnT×nT and letQp be a principal
submatrix obtained by sucessively removingp columns and
rows from Q accoring to the criterion in (17). By repeated
application of Lemma 2 it follows that

λ1(Qp) ≥
1

(nT − p + 1)
λ2(Qp−1)

≥ 1

(nT − p + 1)(nT − p + 2)
λ3(Qp−2)

...

≥ 1

(nT − p + 1) · · · (nT − 0)
λp+1(Q0)

=κλp+1(Q)

where Q0 ,Q by definition. SinceHT
o1Ho1 equalsQp up

to a permutation of the rows and columns it holds that

1In the rest of the paper,λ1(Q) ≤ . . . ≤ λn(Q) denote the ordered
eigenvalues of ann × n matrix Q.

2It should be noted that (17) corresponds to one iteration of the FSD
ordering for the FE stage, as shown by (5).

λ1(H
H
o1Ho1) = λ1(Qp) and the lower bound onλ1(H

H
o1Ho1)

follows. The upper bound follows directly from the interlacing
property of eigenvalues of principal submatrices [28]. �

The interpretation of the corollary is that the minimum
eigenvalue ofHH

o1Ho1 behaves similarly toλp+1(H
HH). In

particular, it follows directly that

lim
x→0

log P
(
λ1(H

H
o1Ho1) ≤ x

)

log x

= lim
x→0

log P
(
λp+1(H

HH) ≤ x
)

log x

=(nR − nT)(p + 1) + (p + 1)2 , (20)

where the last equality follows by [29, Th. 1] or as a special
case of [30, Th. 4]. Combining (20) with (16), yields a lower
bound ondSE that coincides with the upper bound in (15). It
follows directly that

dSE = (nR − nT)(p + 1) + (p + 1)2 . (21)

Finally, inserting (21) into (13) yields the diversity order of
the FSD. We formalize this in the following theorem, which
is the main contribution of this paper:

Theorem 4: The FSD diversity order is given by

dFSD = min(nR , (nR − nT)(p + 1) + (p + 1)2 ) . (22)

It is important to note that this diversity result has been
obtained by looking only at the ordering that takes place in
the FE stage, represented by (17). Thus, selecting the signals
with the largest post-processing noise amplification in the FE
stage is a sufficient condition to achieve (21). Furthermore, by
ordering the signals to be detected in the SE stage accordingto
the FSD ordering, an additional coding gain can be achieved
but no further diversity gain [31].

Different relevant conclusions regarding the performanceof
the FSD can be drawn from (22). Firstly, for an arbitrary
MIMO system following (1), the FSD has the same diversity
as the MLD provided(nR−nT)(p+1)+(p+1)2 ≥ nR. Fur-
thermore, the FSD asymptotically provides ML performance
in the high-SNR regime if(nR−nT)(p+1)+(p+1)2 > nR,
as indicated by Lemma 1. In particular, if we consider the
numerical results of Section II-D and [4], the following can
now be stated:

1) In a4×4 system, the FSD withp = 1 provides the same
diversity as the MLD sincep =

√
nT − 1. However,

it can be seen in Fig. 2 how the (de)coding loss is
negligible, effectively yielding quasi-ML performance.

2) In an 8 × 8 system, the FSD withp = 2 provides
asymptotical ML performance sincep >

√
nT − 1.

It should be noted that those results are completely inde-
pendent of the constellationO used, further indicating the
relevance of the FSD as a MIMO detection algorithm.

Finally, although the study presented here has concentrated
on the assumption of uncorrelated Rayleigh fading due to its
mathematical tractability, it follows by [32] that the results
hold true also for a large class of fading distributions, including
correlated Ricean channels.
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IV. CONCLUSION

This paper presents an error probability analysis of the
recently proposed FSD algorithm in the context of MIMO
detection. The FSD algorithm combines a fixed complexity
search over the tree representation of a spatially multiplexed
MIMO system with a specific detection ordering. It has been
previously shown to provide quasi-ML performance and re-
sults in a highly optimized hardware implementation compared
to the original SD, especially for large number of antennas
and constellation orders. However, no analytic proof of its
performance was available.

By studying the FE and SE stages in the FSD and its
detection ordering, this paper proves that the FSD can provide
the same diversity order as the MLD. In addition, depending
on the number of levels considered in the FE stage, the FSD
can also yield asymptotically ML performance in the high-
SNR regime. In particular, it has been shown that, by selecting
the signals with thelargest post-processing noise amplification
in the FE stage of the algorithm, the diversity of the SE stage
grows beyond the diversity order of the MLD. This result
has been linked to the concept of transmit antenna selection,
where a subset of the transmit antennas are selected to send
data streams over the wireless channel. In essence, by fully
enumeratingp (carefully selected) layers in the tree search, it is
possible to remove the influence of thep weakest eigenmodes
on the subsequent ZF-DFE step. In addition, an expression has
been obtained to establish the number of levels that need to
be considered in the FE stage in an arbitrary MIMO system if
full diversity or asymptotic ML performance is to be achieved.

APPENDIX A
PROOF OFLEMMA 1

SincedSE > dML there existsδ > 0 such thatdSE−dML−
2δ > 0. For sufficiently smallσ2 it follows by (11) and (12)
that

log peML

log σ2
≤ dML + δ ⇔ peML ≥ (σ2)dML+δ

and
log peSE

log σ2
≥ dSE − δ ⇔ peSE ≤ (σ2)dSE−δ .

It follows that

peSE

peML
≤ (σ2)dSE−δ

(σ2)dML+δ
= (σ2)dSE−dML−2δ

for sufficiently smallσ2, which implies that

lim sup
σ2→0

peSE

peML
= 0

sincedSE − dML − 2δ > 0. By (9) it follows that
peFSD

peML
≤ peML

peML
+

peSE

peML

and
lim sup

σ2→0

peFSD

peML
≤ 1 .

However, as
peFSD

peML
≥ 1

for any σ2 ≥ 0 (due to the optimality of MLD) the assertion
of the lemma follows. �

APPENDIX B
PROOF OFLEMMA 2

Note first that it can be assumed, without loss of generality,
thatA is such thatq = 1. This follows since the statement of
Lemma 2 is invariant to permutations of the rows and columns
of A. Let the eigenvalue decomposition ofA be given by

A =
n∑

i=1

ηiuiu
H
i (23)

where (for notational simplicity)ηi ,λi(A) ≥ 0 for i =
1, . . . , n denotes theith eigenvalue ofA, such thatη1 ≤ . . . ≤
ηn, andui are the corresponding eigenvectors. By partitioning
the eigenvectors ofA according to

ui =

[
vi

wi

]

(24)

wherevi ∈ C andwi ∈ Cn−1 the inverse ofA can be obtained
as

A−1 =
n∑

i=1

η−1
1 uiu

H
i

=

n∑

i=1

η−1
i

[
vi

wi

]
[
vH

i wH
i

]

=

n∑

i=1

η−1
i

[
|vi|2 viw

H
i

wiv
H
i wiw

H
i

]

. (25)

Note that the first (and maximal) diagonal element ofA−1 is
given by

[A−1]11 =
n∑

i=1

η−1
i |vi|2. (26)

For the remaining diagonal elements it follows that

max
i=2,...,n

[A−1]ii
(a)

≥ 1

(n − 1)

n∑

j=2

[A−1]jj

(b)
=

1

(n − 1)

n∑

i=1

η−1
i

n−1∑

j=1

[wiw
H
i ]jj

=
1

(n − 1)

n∑

i=1

η−1
i ‖wi‖2

(c)
=

1

(n − 1)

n∑

i=1

η−1
i (1 − |vi|2) (27)

where (a) follows since the maximum diagonal value must
be larger than or equal to the average; (b) follows from the
expansion in (25); and (c) is due to|vi|2+‖wi‖2 = ‖ui‖2 = 1.

The assumption that the maximal diagonal value ofA−1 is
given by [A−1]11 (i.e., q = 1) is equivalent to

[A−1]11 ≥ max
i=2,...,n

[A−1]ii , (28)

which through (26) and (27) yields

n∑

i=1

η−1
i |vi|2 ≥ 1

(n − 1)

n∑

i=1

η−1
i (1 − |vi|2) .
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or equivalently
n∑

i=1

η−1
i [(n − 1)|vi|2 − (1 − |vi|2)]

=

n∑

i=1

η−1
i (n|vi|2 − 1) ≥ 0 . (29)

Normalizing (29) by dividing byη−1
1 yields

0 ≤
n∑

i=1

η1

ηi

(n|vi|2 − 1)

=
k∑

i=1

nη1

ηi

|vi|2 +
n∑

i=k+1

nη1

ηi

|vi|2 −
n∑

i=1

η1

ηi

≤
k∑

i=1

nη1

η1
|vi|2 +

n∑

i=k+1

nη1

ηk+1
|vi|2 −

η1

η1
−

k+1∑

i=2

η1

ηi

≤n

k∑

i=1

|vi|2 +
nη1

ηk+1

n∑

i=k+1

|vi|2 −
η1

η1
−

k+1∑

i=2

η1

ηi

(30)

By introducingτ , defined according to

τ ,

k∑

i=1

|vi|2 , (31)

and noting that
n∑

i=k+1

|vi|2 = 1 − τ (32)

the last line of (30) yields

nτ +
nη1

ηk+1
(1 − τ) − 1 −

k∑

i=2

η1

ηi

− η1

ηk+1
≥ 0 . (33)

Further, letα be defined according to

α ,
η1

ηk+1
. (34)

By the interlacing property for eigenvalues of principal sub-
matrices [28] it follows that

ηk ≤ λk(A1) ≤ ηk+1 .

Thus, wheneverηk ≥ n−1ηk+1 the assertion in (18) is true
for any principal submatrix ofA, regardless of the selection
criterium. Therefore, in order to prove the lemma, we need
only to consider the opposite caseηk < n−1ηk+1. Note also
that this assumption implies that

η1 = αηk+1 > αnηk ≥ αnηi , i = 1, . . . , k , (35)

and thatα < n−1 which is obtained from (35) fori = 1. In
particular, it follows by (35) that

η1

ηi

> αn

for i = 2, . . . , k which together with (33) implies that

nτ + nα(1 − τ) − 1 − αn(k − 1) − α ≥ 0

or equivalently

τ ≥ 1 + α + αn(k − 2)

n(1 − α)
, f(α, n, k) . (36)

Differentiatingf(α, n, k) with respect toα yields

∂

∂α
f(α, n, k) =

n(k − 2) + 2

n(1 − α)2

which implies thatf(α, n, k) is increasing inα for k ≥ 2 and
therefore it follows that

τ ≥ 1

n
(37)

which is obtained by lettingα = 0 in (36). Whenk = 1 it
follows from (36) that

τ ≥ 1 + α − αn

n(1 − α)
(38)

The two cases in (37) and (38) will be handled separately
starting withk = 1 and (38).

To this end, assume thatk = 1 and note thatA1 can be
written, using (23) and (24), as

A1 =

n∑

i=1

ηiwiw
H
i

=η2

(

η1

η2
w1w

H
1 +

n∑

i=2

ηi

η2
wiw

H
i

)

�η2

(

αw1w
H
1 +

n∑

i=2

wiw
H
i

)

(39)

where
η1

η2
= α and

ηi

η2
≥ 1 , i = 2, . . . , n,

has been used in the last inequality. In the above, we have
used� (�) to denote the partial matrix ordering induced by
the positive semi-definite cone, i.e., for Hermitian matrices
X,Y ∈ Cr×r the notationX � Y (Y � X) means that
X−Y is positive semi-definite. In particular,X � Y implies
that λi(X) ≥ λi(Y) for i = 1, . . . , r. Defining

B,αw1w
H
1 +

n∑

i=2

wiw
H
i ∈ C

(n−1)×(n−1) ,

we obtain from (39) thatA1 � η2B. Thus, λ1(A1) ≥
η2λ1(B) and what remains to be shown is thatλ1(B) ≥ n−1.
To this end, note that, sinceα < 1, it follows that

B �
n∑

i=1

wiw
H
i = I

and, in particular,λi(B) ≤ 1 for i = 1, . . . , n−1. At the same
time,

n−1∑

i=1

λi(B) = Tr(B) = α‖w1‖2 +

n∑

i=2

‖wi‖2 . (40)

Since |vi|2 + ‖wi‖2 = ‖ui‖2 = 1 from (24), it follows
from (31) that‖w1‖2 = 1 − τ , sincek = 1, and

n∑

i=2

‖wi‖2 =

n∑

i=2

(1 − |vi|2) = n − 2 + τ .
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Combining this with (40) yields

n−1∑

i=1

λi(B) =α(1 − τ) + n − 2 + τ

≥α + n2 − 2n + 1

n
= (n − 2) +

1 + α

n

where (38) was used to establish the inequality. Equivalently,

λ1(B) ≥ 1 + α

n
+ (n − 2) −

n−1∑

i=2

λi(B) . (41)

However, sinceλi(B) ≤ 1 for i = 2, . . . , n − 1 this implies
that

λ1(B) ≥ 1 + α

n
+ (n − 2) − (n − 2) ≥ 1

n

which proves thatλ1(A1) ≥ n−1λ2(A) since λ1(A1) ≥
η2λ1(B) andη2 ,λ2(A).

Whenk ≥ 2 it is sufficient to consider the lower bound on
A1 given by

A1 �
n∑

i=k+1

ηiwiw
H
i � ηk+1C (42)

where

C,

n∑

i=k+1

wiw
H
i � I . (43)

Since the rank ofC is at mostn − k it follows that
n−1∑

i=k

λi(C) =

n−1∑

i=1

λi(C) = Tr(C)

=
n∑

i=k+1

‖wi‖2 = n − k − 1 + τ

where |vi|2 + ‖wi‖2 = 1 and (32) was used to establish the
last equality. Similar to before,

λk(C) ≥ τ + (n − k − 1) −
n−1∑

i=k+1

λi(C) ≥ 1

n

whereλi(C) ≤ 1 and (37) was used. Using (42) yields

λk(A1) ≥ ηk+1λk(C) ≥ n−1λk+1(A)

sinceηk+1 ,λk+1(A). This concludes the proof. �
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